Confidence Intervals

Confidence Interval: Estimate \pm Margin of Error z^* is the probability of central C% in a normal distribution (C% is the confidence level)

Proportion – large sample size	$p \pm z^* \sqrt{\frac{pq}{n}}$
Proportion Difference p ₁ -p ₂	$(p_1 - p_2) \pm z^* \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$
Mean; n≥30 and σ known	$\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}}$
Mean; n \geq 30 and σ unknown	$\overline{x} \pm z^* \frac{s}{\sqrt{n}}$ where s = sample std. deviation
Mean; n<30 and σ unknown	$\overline{x} \pm t^* \frac{s}{\sqrt{n}}$ t* is the critical t value for n-1 degrees of freedom

Hypothesis Testing

 $\alpha = P(Type \ I \ error) = P(Reject \ H_0|H_0 \ is \ true)$ $\beta = P(Type \ II \ error) = P(Fail \ to \ Reject \ H_0|H_A \ is \ true)$ **Power** = 1- β

Calculate z

Proportion – large sample size	$z = \frac{p - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$
Proportion Difference p_1-p_2 (with H_0 : $p_1-p_2=0$)	$z = \frac{p_1 - p_2}{\sqrt{\frac{p_{pooled} q_{pooled}}{n_1} + \frac{p_{pooled} q_{pooled}}{n_2}}} \text{ or } z = \frac{(p_1 - p_2)}{\sqrt{p_{pooled} q_{pooled}}(\frac{1}{n_1} + \frac{1}{n_2})}$ and $p_{pooled} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$
Mean; n≥30 and σ known	$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$
Mean; n≥30 and σ unknown	$z = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$
Mean; n<30 and σ unknown	$t = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$

Test Type	P-Value Calculation
$H_0: p=p_0 \text{ vs } H_A: p>p_0$	Probability of upper tail = $P(Z>z) = normalcdf(z, 6)$
$H_0: p=p_0 \text{ vs } H_A: p < p_0$	Probability of lower tail = $P(Z \le z) = normalcdf(-6, z)$
$H_0: p=p_0 \text{ vs } H_A: p\neq p_0$	Probability of both tails = $P(Z > z) = 2*normalcdf(z , 6)$

When using a t-statistic, replace normalcdf() with tcdf(lower, upper, df) where df=n-1

Conclusion

Reject H_0 if P-Value is less than the significance level. We say "There is sufficient evidence to support the alternative hypothesis"

sample standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n - 1}} = \sqrt{\frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2}{n - 1}}$$

or enter the sample data into L_1 and run 1-VarStats L_1 , sample standard deviation is s_x

Conditions of the CLT

Randomization

- Are the members of the sample chosen randomly from the population, or might there be some reason they have a relationship with each other?
- Police want to sample 100 drivers on a stretch of highway to see how many speeders they get.
 - A: They go out at noon and sample the next 100 drivers
 - B: They go out at 9am and sample the first 100 red cars
 - C: They sit out from 5am to 6pm (10 hours) and every 6 minutes sample a car to get 100 cars
 - D: They turn on the radio every time the radio station's call letters are mentioned, they sample a car
- Clearly B is not random- they're only picking red cars. A is also not very random- maybe around noon there are more (or fewer) speeders. C and D are better. Maybe D is more random, but as far as randomization goes, both C and D should be satisfactory.

10% Rule

Is the sample less than 10% of the total population? This all depends on what population are you making inferences about. Typically the 10% rule is satisfied with no problem, because the population you're talking about is so huge that your sample is much much smaller than 10%.

10 failures, 10 successes

 Based on the supposed proportion, is the sample size large enough to get at least 10 failures and 10 successes? Just calculate n*p and n*q – as long as both are greater than 10 the condition is met. Bernoulli: 1 trial, probability p of success

P(success)=p, P(fail)=1-p=q

<u>Binomial</u>: # of successes from *n* independent trials, each with probability *p* of success $\mu = np, \sigma = \sqrt{\frac{pq}{n}}$

X~Binomial(n,p) then $P(X=k) = {n \choose k} p^k q^{n-k} = \text{binompdf}(n,p,k)$

$$P(X \leq k) = \sum_{i=0}^{n} {n \choose i} p^{i} q^{n-i} = \text{binomcdf(n,p,k)}$$

Geometric: # of trials until first success, when doing independent trials with *p* of success $\mu = \frac{1}{p}, \sigma = \sqrt{\frac{q}{p^2}}$ X~Geometric(p) then $P(X=k) = pq^{k-1} = \text{geometpdf}(p,k)$ and $P(X \le k) = \sum_{i=1}^{k} pq^{k-1} = \text{geometcdf}(p,k)$

Math notation

Factorial

 $n! = n(n-1)(n-2)\cdots(3)(2)(1)$ By definition 0! = 1TI: [MATH] > [PRB] > !

Combination

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ Note that $\binom{n}{0} = \binom{n}{n} = 1$ and $\binom{n}{1} = \binom{n}{n-1} = n$, also in general $\binom{n}{k} = \binom{n}{n-k}$ TI: [MATH] > [PRB] > nCr eg) 15 nCr 4

Exponential

 $e^{x} \approx 2.7183^{x}$ TI: [2nd] [LN] eg) $e^{(6)}$

Summation

 $\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$